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Abstract
In this paper, we consider optimal pairs trading strategies in terms of static optimality
and dynamic optimality under mean–variance criterion. The spread of the entity pairs
is assumed to be mean-reverting and follows an Ornstein–Uhlenbeck process. A con-
strained optimal control problem is considered, and the Lagrange multiplier technique
is adopted to transform the primal problem into a family of linear-quadratic optimal
control problems that can be solved by the classical dynamic programming principle.
Both solutions for static and dynamic optimal pairs trading problems are derived and
discussed.We show that the “static and dynamic optimality” is a viable approach to the
time-inconsistent control problem. Furthermore, numerical experiments are presented
to demonstrate the performance of the optimal pairs trading strategies.
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1 Introduction

Pairs trading is a trading strategy on highly correlated stock pairs whose prices
move together historically and predictably. After being applied to industry by Nunzio
Tartaglia’s team at Wall Street in mid 1980s, pairs trading has become popular as a
market-neutral investment strategy and has been widely used by traders and hedge
funds. There are three main techniques that can be utilized to execute a pairs trading
strategy: distance method, cointegration method and stochastic spread method. For
more discussion on classification of pairs trading methods, please refer to [14] and
[17]. The distance method attempts to make profits when the squared price difference
between the concerned asset pairs triggers a prescribed level, see [23]. This method
is straightforward; however, it lacks the ability to forecast the convergence time and
holding period that determine the success of a pairs trading strategy. To address this
issue, [31] pioneered the cointegration approach which assumes that the price dynam-
ics of the asset pair are cointegrated. Cointegration is a statistical relationship where
two integrated time series can be linearly combined to produce a single stationary
time series. By applying this method, the spread of the integrated pairs, which could
be modeled as the logarithm difference of a pair of stock prices, becomes tractable.
The literature that is categorized as using the cointegration method includes [11, 19,
22, 31] and [30], etc. However, the stochastic spread method explicitly models the
price spread between the paired assets. The spread is commonly modeled as a mean-
reverting process, for instance, the Cox–Ingersoll–Ross process or the OU process.
Papers based on this approach include [6, 9, 27] and [4], etc. In addition to these
three main methods, [15, 16] considered another method which is a sort of combined
forecast using Multi-Criteria Decision Methods. However, no other research work has
followed this method so far. In this paper, we adopt the stochastic spread method.

We investigate the optimal pairs trading problem under the MV criterion pioneered
by [21]. It has long been commonly used in both academia and industry because of its
simplicity and intuitive appeal. The objective of investors can be intuitively expressed
in the MV criterion as maximizing the expected terminal wealth and controlling the
investment risk with a risk aversion level represented by a parameter in front of vari-
ance in the problem. However, there is a time-inconsistency issue when we consider
the pairs trading problem with MV objective using the stochastic spread model. The
nonlinearity caused by variance in MV problem makes the DP approach no longer
applicable. Well-known methods to deal with this time-inconsistent optimal control
problem can be divided into two main categories. The first one is the pre-committed
strategy. This method interprets the optimal as the optimal from the initial time, where
the optimality is called the static optimality. [26] first adopted this method toMV anal-
ysis in a continuous-time setting. Afterward, discrete-time cases and those involving
transaction cost are solved consequently, see [2, 18, 33, 34], and [5]. The second
method is called the game theoretic approach, which addresses the time-inconsistent
problem with subgame perfect Nash equilibrium. The idea of this method was first
introduced by Stroz (1955) when studying the deterministic Ramsey problem, and the
corresponding optimality concept was proposed by Selten in 1965. Further studies
on continuous-time and discrete-time cases are done by [25] and [12], etc. As more
researchers become interested in this topic, [7] and [8] firstly provided a precise defi-
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nition of game theoretic equilibrium under the continuous time case. When it comes
to the particular case of MV analysis, [1] used the total variance formula under game
theoretic approach to solve this time-inconsistent problem.

In this paper, we consider optimal pairs trading strategies in terms of static and
dynamic optimality under the MV criteria. The definitions of static and dynamic MV
optimality are defined in [24]. They proposed a newmethodology for solving nonlinear
optimal control problems and demonstrated it in MV analysis. This new approach
considered the related constrained problems and made use of Lagrange multipliers
to transform nonlinear problems into a family of LQ problems, which can be solved
by using the classical Hamilton–Jacobi–Bellman (HJB) approach. We adopt this new
method inMV analysis and apply it to pairs trading. To obtain the dynamic optimality,
we change the initial time and initial value of wealth in the static optimal solution to
any time afterward and the corresponding value of wealth at that time, respectively.
We then show that this new solution is indeed the dynamic optimal solution.

[35] studied the optimal pairs trading strategies with MV criterion. They compared
the two cases of “symmetric” and “non-symmetric” trading constraints. By employing
the equilibrium strategy in [1], they derived the analytical solutions to the optimal
control problems under two constraint cases, respectively. In this work, we adopt the
same price spread process as [35], but work on solutions with static and dynamic
MV optimalities, in the same spirit as [24]. We obtained the static optimal strategies
and then extended them to the dynamic optimality successfully. The key conceptual
difference between these two papers is that the definition of equilibrium optimality is
constrained in the sense that the optimal control at time t is best among all “available”
control, while the definition of dynamic optimality is unconstrained in the sense that
the optimal control at time t is best among all “possible” controls afterward. For more
details, we refer readers to Section 4 of [24].

The paper is structured as follows. Section 2 introduces the model dynamics for
a pairs trading problem in a continuous-time setting and the concerned MV opti-
mal control problem. Section 3 then discusses how to solve the control problem by
introducing the constrained problem and using Lagrange multiplier techniques. The
detailed derivation of the analytical static optimal solution is provided. Section 4
further derives the dynamic optimal solution to the pairs trading control problem.
Details of the validation and explanations are also provided. Section 5 presents simu-
lated numerical experiments to illustrate the application of the optimal pairs strategy
obtained. Finally, Sect. 6 concludes the paper.

2 TheModel Setup

Assume that a risk-free asset N (t) exists with a risk-free rate of r compounded con-
tinuously. Thus, N (t) satisfies the dynamics

dN (t) = r N (t)dt . (1)

We adopt [22]’s framework to setup the pair trading model. Let A(t) and B(t) denote,
respectively, the prices of stocks A and B at time t . We assume that stock B follows a
geometric Brownian motion
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dB(t)

B(t)
= μdt + σdZ(t), (2)

where constants μ and σ are the drift and the volatility, respectively. Here, Z(t) is
a standard Brownian motion. Let γ be a predetermined ratio1 and X(t) denote the
spread of stocks A and B at time t , defined as

X(t) = ln(A(t)) − γ ln(B(t)). (3)

We further assume that the spread follows an OU process

dX(t) = k(θ − X(t))dt + ηdW (t), X(t0) = x0, (4)

whereW (t) is a standardBrownianmotion, andρ denotes the instantaneous correlation
coefficient between Z(t) and W (t). Therefore, by a straightforward calculation, we
obtain

dA(t)

A(t)
=

[
k(θ − X(t)) + γμ + η2

2
+ σ 2γ (γ − 1)

2
+ ρσηγ

]
dt+σdZ(t)+ηdW (t).

(5)
Let V (t) be the value of a self-financing pairs-trading portfolio, h(t) and 1 − (1 −
γ )h(t) denote the portfolio weights of the stock pair and the risk-free asset at time t ,
respectively. Then, the wealth process V (t) becomes

dV (t) = V (t)

[
h(t)

dA(t)

A(t)
− h(t)γ

dB(t)

B(t)
+ [1 − (1 − γ )h(t)]dN (t)

N (t)

]
, (6)

and substituting Eqs. (2) and (5) into Eq. (6), we have

dV (t) = V (t) {[r + (κ − kX(t)) h(t)]dt + ηh(t)dW (t)} , V (t0) = v0, (7)

where

κ = kθ + σ 2γ (γ − 1)

2
+ 1

2
η2 + ρσηγ − (1 − γ )r . (8)

Remark 1 If we further consider more general dynamics of stock B, for instance, we
consider geometric Lévy process to include jumps, then the dynamics of B can be
written by

dB(t)

B(t−)
= μdt + σdZ(t) + d

⎛
⎝K (t)∑

i=1

(
eξi − 1

)
⎞
⎠ , (9)

where K (t) is a Poisson process with intensity ν, and ξi for i = 1, 2, . . . are random
variables thatmodel the sizes of jumps.Note thatwe assume the sizes to be eξi −1 > −1
in order to ensure that B(t) > 0.

1 In practice, the value of γ is important to the pairs trading strategies and can be determined by co-
integration test. For more detailed discussion, we refer to [10]. If the two securities are stocks from the
same financial sector (like two banking stocks), one may take this ratio to be unity.
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With the definition given byEq. (3) and the assumption given byEq. (4), we then can
derive the dynamics of stock A accordingly.Assume the j-th jumpoccurred in the stock
price B at time t , then the jump size at t is
B(t) = B(t)− B(t−) = (eξ j −1)B(t−).
We therefore have


(ln(B))(t) = ln(B(t−) + 
B(t)) − ln(B(t−))

= ln(B(t−)(1 + eξ j − 1)) − ln(B(t−))

= ξ j . (10)

Since the spread X follows an OU process, there is no jump in X . With ln(A(t)) =
X(t) + γ ln(B(t)), we know that a jump in A only occurs when there is a jump in B.
Hence,


(ln(A))(t) = γ
(ln(B))(t) = γ ξ j . (11)

We then can derive the jump size in stock A by


A(t) = A(t) − A(t−) = eln(A(t)) − eln(A(t−))

= eln(A(t−)+
(ln(A))(t)) − eln(A(t−))

= A(t−)(e
(ln(A))(t)) − 1)

= A(t−)(eγ ξ j − 1). (12)

Therefore, we have

dA(t)

A(t−)
=

[
k(θ − X(t)) + γμ + η2

2
+ σ 2γ (γ − 1)

2
+ ρσηγ

]
dt + γ σdZ(t) + ηdW (t)

+ d

⎛
⎝K (t)∑

i=1

(
eγ ξi − 1

)⎞
⎠ . (13)

The corresponding dynamics of the wealth process V then become

dV (t) = V (t−) {[r + (κ − kX(t)) h(t)]dt + ηh(t)dW (t)} ,

+ h(t)d

⎛
⎝K (t)∑

i=1

(
eγ ξi − 1

)
⎞
⎠ − h(t)γ d

⎛
⎝K (t)∑

i=1

(
eξi − 1

)
⎞
⎠ . (14)

Note that the jump terms in the dynamics of V cancel when γ = 1, but not for γ �= 1.
In short,

• If γ = 1, the dynamics of V stay the same as given in Eq. (7) even when jumps
generated by a geometric Lévy process are included in the dynamics of B. Hence,
the trading strategies derived in this paper are still applicable in this case.

• If γ �= 1, there will be jump terms in the dynamics of V as given in Eq. (14).
In this case, the optimal control problem becomes significantly more complicated
and is beyond the scope of this paper.
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We consider the optimal control problem

J (t, x, v) = sup
h

{Et,x,v[V h(T )] − cVart,x,v[V h(T )]}, (15)

where the supremum is takenover all admissible controls h such that Et,x,v[V h(T )2] <

∞ for (t, x, v) ∈ [t0, T ]×R×R and c > 0 is a given and fixed constant which reflects
the investor’s risk aversion level. Here, x and v represent the values of X(t) and V h(t)
at time t ∈ [t0, T ], respectively.

3 Solution to the Problem

We first derive the static optimality for the problem. Let E0 denote the expectation
Et0,x0,v0 . Notice that

E0[V h(T )] − cVart0,x0,v0 [V h(T )] = E0[V h(T )] + cE0[V h(T )]2 − cE0[(V h(T ))2].
(16)

To overcome the difficulty of quadratic nonlinearity, we consider to fix

E0[V h(T )] = M,

where M ∈ R is given, then

J (t0, x0, v0) = sup
M∈R

sup
h:E0[V h(T )]=M

{E0(V
h(T )) − cVart0,x0,v0 [V h(T )]}

= sup
M∈R

sup
h:E0[V h(T )]=M

{E0(V
h(T )) + cE0[V h(T )]2 − cE0[(V h(T ))2]}

= sup
M∈R

{M + cM2 − c inf
h:E0[V h(T )]=M

E0[(V h(T ))2]}. (17)

To begin with, we consider the constrained problem

JM (t0, x0, v0) = inf
h:E0[V h(T )]=M

E0[(V h(T ))2], (18)

and we apply the Lagrange multipliers method to solve this problem. Define the
Lagrangian as follows

Lt0,x0,v0(h, λ) = E0[(V h(T ))2] − λ
(
E0[V h(T )] − M

)
(19)

for λ ∈ R. Denote h∗
λ to be the optimal control in the unconstrained problem

Lt0,x0,v0(h
∗
λ, λ) := inf

h
Lt0,x0,v0(h, λ). (20)

We further suppose that
E0[V h∗

λ(T )] = M, (21)
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for a specific λ ∈ R, then we have

E0[(V h∗
λ(T ))2] = Lt0,x0,v0(h

∗
λ, λ) ≤ E0[(V h(T ))2] (22)

for any control h such thatE0[(V h(T ))] = M . This means h∗
λ is the optimal control of

the constrained problem in Eq. (18) when satisfying both Eqs. (20) and (21). Thus, to
solve Problem (18), it suffices to solve Eq. (20) and Eq. (21). Therefore, we consider
the following optimal control problem:

Jλ(t0, x0, v0) := inf
h
E0[(V h(T ))2 − λV h(T )]. (23)

Using the classic DP approach, we have the HJB equation:

0 = inf
h

[
Jλ
t + k(θ − x)Jλ

x + η2 Jλ
xx

2
+ [r + h(κ − kx)]v Jλ

v + η2h2v2 Jλ
vv

2
+ η2hv Jλ

xv

]
. (24)

Making the ansatz that Jλ
vv > 0 and minimizing the quadratic function, we have

(κ − kx)v Jλ
v + η2v2h Jλ

vv + η2v Jλ
xv = 0, (25)

which gives us

h∗ = −η2 Jλ
xv + (κ − kx)Jλ

v

η2v Jλ
vv

. (26)

For simplicity of notation, we rewrite

h∗ = −ηJλ
xv + δ Jλ

v

ηv Jλ
vv

, (27)

where δ = κ−kx
η

. Substituting h∗ back into Eq. (24), it reduces to

Jλ
t + k(θ − x)Jλ

x + 1

2
η2 Jλ

xx + rv Jλ
v − (δ Jλ

v + ηJλ
xv)

2

2Jλ
vv

= 0, (28)

with Jλ(T , X(T ), V (T )) = V (T )2−λV (T ). In order to solve the above equations,we
noted that Jλ(T , X(T ), V (T )) has a quadratic growth in V (T ) by Eq. (28). Therefore,
we assume the ansatz takes the following form:

Jλ(t, x, v) = a(t, x)v2 + b(t, x)v + c(t, x). (29)

Then, Eq. (28) becomes

atv
2 + btv + ct + k(θ − x)(axv

2 + bxv + cx ) + 1

2
η2(axxv

2 + bxxv + cxx ) + rv(2av + b)

− 1

4a
[δ2(4a2v2 + 4abv + b2) + 2δη(4aaxv

2 + 2abxv + 2axbv + bbx ) + η2(4a2xv
2 + 4axbxv + b2x )] = 0.

(30)
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We then have the system

at + k(θ − x)ax + 1
2η

2axx + 2ra − δ2a − 2δηax − η2a2x
a = 0,

bt + k(θ − x)bx + 1
2η

2bxx + rb − δ2b − δηbx − δηaxb
a − η2axbx

a = 0,

ct + k(θ − x)cx + 1
2η

2cxx − (δb+ηbx )2

4a = 0,

(31)

with
a(T , X(T )) = 1,
b(T , X(T )) = −λ,

c(T , X(T )) = 0.
(32)

By the assumption Jλ
vv > 0, we assume a = eP . Then, from the first equation in Eq.

(31), we have

Pt + [k(θ − x) − 2δη]Px − 1

2
η2P2

x + 1

2
η2Pxx + 2r − δ2 = 0. (33)

Substituting δ into this equation and assuming P(t, x) = m1(t)x2 + n1(t)x + l1(t),
we obtain

m′
1 + 2km1 − 2η2m2

1 − k2

η2
= 0,

n′
1 + (k − 2η2m1)n1 + 2(kθ − 2κ)m1 + 2κk

η2
= 0,

l ′1 + (kθ − 2κ)n1 − η2n21
2 + η2m1 + 2r − κ2

η2
= 0,

(34)

with
m1(T ) = 0,
n1(T ) = 0,
l1(T ) = 0.

(35)

Notice that the first equation in Eq. (34) is a Riccati equation, and the solution of this
equation is given as follows:

m1(t) = k

2η2

[
1 + ξ − ξ2 + 1

ξ + tan(kt)

]
, (36)

where

ξ = 1 − tan(kT )

1 + tan(kT )
.

With the solution of m1(t), both n1(t) and l1(t) can be solved accordingly and are
given as follows:

n1(t) = e−I (t)
[∫ (

2(kθ − 2κ)m1(t) + 2κk

η2

)
eI (t)dt + Cn1

]
, (37)

l1(t) = (2κ − kθ)tn1(t) + η2tn21(t)

2
− η2tm1(t) − 2r t + κ2t

η2
+ Cl1, (38)
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where constant Cn1 and Cl1 satisfy the terminal conditions and

I (t) =
∫ [

k − 2η2m1(t)
]
dt = − kξ t

2η2
+ ln | tan(kt) + ξ | − ln (sec2(kt))

2
+

(
kt − π

⌊
kt + π

2

π

⌋)
.

(39)
Notice that they are not functions of λ. If we assume b > 0 and b = eQ or assume
b < 0 and b = −eQ , then from the second equation in Eq. (31), we have

Qt + [k(θ − x) − δη]Qx + 1

2
η2(Q2

x + Qxx ) − δηPx − η2Px Qx + r − δ2 = 0. (40)

Substituting δ into this equation and assuming

Q(t, x) = m2(t)x
2 + n2(t)x + l2(t),

we then obtain

m′
2 − 4η2m1m2 + 2η2m2

2 + 2km1 − k2

η2
= 0,

n′
2 + 2η2(m2 − m1)n2 + (k − 2η2m2)n1 + 2(kθ − κ)m2 − 2κm1 + 2κk

η2
= 0,

l ′2 + (kθ − κ − η2n1)n2 + n22η
2

2 + m2η
2 − κn1 + r − κ2

η2
= 0,

(41)
with

m2(T ) = 0
n2(T ) = 0
l2(T ) = ln(−λ)

if b > 0, or
m2(T ) = 0
n2(T ) = 0
l2(T ) = ln(λ)

if b < 0.

Notice that thefirst twoequations inEq. (41)woulddegenerate to thefirst twoequations
in Eq. (34) if we set m2(t) = m1(t) and n2(t) = n1(t). Therefore, m1(t) and n1(t)
given by Eqs. (36) and (37) are the solutions to the first two equations of Eq. (41) as
well. In addition, observe that the left-hand side of the equation for l2 in Eq. (41) is
independent of λ and thus, we can separate λ and t in l2(t; λ). Let l̃2(t) be the solution
of the third equation in Eq. (41). We obtain that

l̃2(t) = (2κ − kθ)tn1(t) + η2tn21(t)

2
− η2tm1(t) − r t + κ2t

η2
+ Cl2, (42)

withCl2 satisfying the terminal condition of l̃2(T ) = 0. Therefore, l̃2(t) is independent
of λ and thus,

l2(t; λ) =
{
ln(−λ) + l̃2(t), for b > 0,

ln(λ) + l̃2(t), for b < 0.
(43)

According to the ansatz of Jλ in Eq. (29), h∗ can then be rewritten in the following
form:

h∗ = −η(2axv + bx ) + δ(2av + b)

2aηv
. (44)

We can therefore conclude the results in the following proposition.
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Proposition 1 An optimal solution to the MV problem in Eq. (15) with the dynamic
constraint in Eq. (7) is given by:

h∗(t, x, v) = −[(2η2m1(t) − k)x + n1(t)η2 + κ](2el1(t)v − λel̃2(t))

2η2vel1(t)
, (45)

where m1(t), n1(t), l1(t) and l̃2(t) are given in Eqs. (36), (37), (38) and (42).

Substituting the optimal control h∗ given by Eq. (45) into Eq. (7), we then get

dV (t, X(t))

= [α(t, X(t)) + β(t, X(t))V (t, X(t))]dt + [γ (t, X(t)) + ν(t, X(t))V (t, X(t))]dW (t),

(46)

where
α(t, X(t)) = λ

η
(κ − kX(t))g(t, X(t))el̃2(t)−l1(t),

β(t, X(t)) = r − 2
η
g(t, X(t))(κ − kX(t)),

γ (t, X(t)) = λg(t, X(t))el̃2(t)−l1(t),

ν(t, X(t)) = −2g(t, X(t)),

(47)

and

g(t, X(t)) = (2η2m1(t) − k)X(t) + n1(t)η2 + κ

2
. (48)

Notice that the optimal strategy h∗ and the corresponding optimal V h∗
(T ) depend

on the value of λ which satisfies E0[V h∗
λ(T )] = M . According to Eq. (17), to find

out J (t, x, v), we need to find out the optimal M that maximize Eq. (17). For each
value of M , there is a corresponding λ. However, there is no explicit expression for
Et,x,v[V h(T )] = M . Therefore, we do not have the explicit expression of M in terms
of λ. In order to explore all M to find out the optimal value that maximizes the control
problem Eq. (15), it suffices to explore all λ to maximize the control problem Eq. (15).
The corresponding M that maximize Eq. (15) would therefore be the optimal one.
Note that it may happen that several different values of λ have the same corresponding
value of M , but it does not matter since we only concern about the optimal value of
M that maximizes the control problem Eq. (15). Therefore, we can explore the values
of λ to maximize Eq. (15), and the corresponding optimal strategy h∗ would then
maximize the control problem.

4 Extension to Dynamic Optimal Control Problem

Replacing t0, x0 and v0 with t , x and v, respectively, in the static optimal control
h∗
s := h∗ as derived in the previous section, we can then obtain control h∗

d . We claim
that this h∗

d is the optimal control for the dynamic case.

123



46 Journal of Optimization Theory and Applications (2023) 196:36–55

Proposition 2 For every given and fixed (t, x, v) ∈ [t0, T ] × R × R, control h∗
d is

defined to be h∗
d(t, x, v) = h∗

s (t, x, v; λ(t, x, v)). For any other admissible control h̄
such that h̄(t, x, v) �= h∗

d(t, x, v), we have

Jh∗
d
(t, x, v) := Et,x,v[V h∗

d (T )] − cVart,x,v[V h∗
d (T )] (49)

and
Jh̄(t, x, v) := Et,x,v[V h̄(T )] − cVart,x,v[V h̄(T )]. (50)

Then, we claim that
Jh∗

d
(t, x, v) > Jh̄(t, x, v). (51)

In other words, h∗
d is dynamically optimal in problem (15).

Proof By the definition of dynamically optimal control h∗
d ,

Jh∗
d
(t, x, v) = Jh∗

s
(t, x, v; λ(t, x, v))

is the optimal value function if we view t , x , and v as the initial time conditions for
statically optimal control h∗

s . Denote Mh̄ := Et,x,v[V h̄(T )], as we discussed before,
we can rewrite Jh̄(t, x, v) as follows:

Jh̄(t, x, v) = Mh̄ + cM2
h̄

− cEt,x,v[V h̄(T )2]
≤ Mh̄ + cM2

h̄
− cJMh̄

(t, x, v).
(52)

Similarly, we can rewrite

Jh∗
d
(t, x, v) = M∗ + cM2∗ − cJM∗(t, x, v). (53)

We now divide the proof into two cases: (i) Mh̄ �= M∗ and (ii) Mh̄ = M∗.

(i) Mh̄ �= M∗. Since M∗ is the unique maximum point of the quadratic function in
Eq. (17), the strict inequality follows.

Jh̄(t, x, v) ≤ Mh̄ + cM2
h̄

− cJMh̄
(t, x, v)

< M∗ + cM2∗ − cJM∗(t, x, v) = Jh∗
d
(t, x, v)

(54)

Thus, Eq. (51) is proved under this case.
(ii) Mh̄ = M∗. To prove Eq. (51) under this case, we consider to prove the following

strict inequality first:

Jλ∗
h̄

(t, x, v) := Et,x,v[(V h̄(T ))2 − λ∗V h̄(T )] > Jλ∗
h∗
d
(t, x, v), (55)
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where Jλ∗
h∗
d
(t, x, v) is defined in Eq. (23) and λ∗ corresponds to the optimal control

h∗. With Eqs. (24) and (28) and applying Ito’s formula, we can obtain

(V h̄(T ))2 − λ∗V h̄(T )

= Jλ∗
h∗
d
(T , X(T ), V h̄(T ))

= Jλ∗
h∗
d
(t, x, v) + ∫ T

t [Jλ∗
s + k(θ − X(s))Jλ∗

x + [r + (κ − kX(s))h̄]V h̄(s)Jλ∗
v

+ 1
2η

2 Jλ∗
xx + 1

2η
2h̄2(V h̄(s))2 Jλ∗

vv + η2h̄V h̄(s)Jλ∗
xv ]ds + GT ,

(56)
where Gs := ∫ s

t [ηJλ∗
x + ηh̄V h̄(r)Jλ∗

v ]dW (r) is a martingale. Taking Et,x,v on
both sides of Eq. (56), we obtain

Jλ∗
h̄

(t, x, v)

= Jλ∗
h∗
d
(t, x, v) + Et,x,v[∫ T

t [Jλ∗
s + k(θ − X(s))Jλ∗

x + [r + (κ − kX(s))h̄]V h̄(s)Jλ∗
v

+ 1
2η2 Jλ∗

xx + 1
2η2h̄2(V h̄(s))2 Jλ∗

vv + η2h̄V h̄(s)Jλ∗
xv ]ds].

(57)
Notice that the integrand of Eq. (57) is non-negative according to Eq. (24). As we
have already assumed that h̄(t, x, v) �= h∗

d(t, x, v), and because of the continuity
of h̄ and h∗

d , we can find ε > 0 which is small enough such that for all

(t̃, x̃, ṽ) ∈ Rε := [t, t + ε] × [x − ε, x + ε] × [v − ε, v + ε],
h̄(t̃, x̃, ṽ) �= h∗

d(t̃, x̃, ṽ) and t + ε < T hold. Since h∗
d(t, x, v) is the minimum

point of continuous function of Eq. (24) and h̄(t̃, x̃, ṽ) �= h∗
d(t̃, x̃, ṽ) on Rε . If ε

is small enough, we can then find p > 0 such that

Jλ∗
s +k(θ−x̃)Jλ∗

x + 1

2
η2 Jλ∗

xx +[r + (κ − kx̃)h̄]ṽ Jλ∗
v + 1

2
η2h̄2ṽ2 Jλ∗

vv +η2h̄ṽ Jλ∗
xv ≥ p > 0. (58)

Setting τε := inf{s ∈ [t, t + ε]|(s, X(s), V h̄(s)) /∈ Rε}. Since both X(t) and
V h̄(t) are continuous, then τε > t . Therefore, from Eqs. (57) and (58) we obtain
that

Jλ∗
h̄

(t, x, v) ≥ Jλ∗
h∗
d
(t, x, v) + pEt,x,v[τε − t0] > Jλ∗

h∗
d
(t, x, v), (59)

which means the strict inequality in Eq. (55) holds. Recall Eqs. (18) to (23), we
have

Jλ∗
h∗
d
(t, x, v) = JM∗(t, x, v) − λ∗M∗. (60)

Under this case, we have Et,x,v[V h̄(T )] = Mh̄ = M∗. Then, from Eq. (55), we
further have

Et,x,v[(V h̄(T ))2] − λ∗M∗ = Jλ∗
h̄

(t, x, v) > Jλ∗
h∗
d
(t, x, v) = JM∗(t, x, v) − λ∗M∗.

(61)
Therefore, we have

Et,x,v[(V h̄(T ))2] > JM∗(t, x, v). (62)
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Fig. 1 The log price of the pair of stocks. Stock A(t) is Bank of Communications (601328.SS), while stock
B(t) is Ping An Bank (000001.SZ ). The pair ratio γ = −0.0985 is calculated from least square regression

Table 1 Estimated values for parameters in the model

Parameters x0 σ μ k θ η ρ γ

Values 2.0039 0.3081 0.6321 − 0.6263 1.9563 1.1240 0.1176 − 0.0985

Recall Eq. (17), we have

Jh∗
d
(t, x, v) = M∗ + cM2∗ − cJM∗(t, x, v)

> M∗ + cM2∗ − cEt,x,v[(V h̄(T ))2]
= Et,x,v[V h̄(T )] − cVart,x,v[V h̄(T )]
= Jh̄(t, x, v).

(63)

This shows Eq. (51) holds when Mh̄ = M∗.
We then conclude that Eq. (51) always holds and h∗

d(t, x, v) is the dynamic optimal
control. 	


5 Numerical Experiments

In this section,we demonstrate how to apply the formulas and propositions in our paper
to solve problems in practice. In the following numerical experiments, daily closing
prices are employed.We choose a pair of highly co-integrated stocks,2 namely, PingAn
Bank (000001.SZ ) and Bank of Communications (601328.SS) traded on the Chinese

2 The formation is not the focus of this paper, so we omit the details here. For more discussions about the
selection of pair of assets, please refer to [10, 11] and [13].
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Fig. 2 Simulation results for the four chosen ranges

Table 2 Optimal value of λ under different ranges

Range of λ [−10, 10] [−20, 20] [−40, 40] [−100, 100]
Optimal λ 9.9 13.5 13.5 13.5

securities market from January 1, 2019 to December 31, 2019. The dynamics of log
prices of these two stocks are presented in Fig. 1.

We set the initial wealth v0 = 100, risk aversion factor c = 0.2 and interest rate
r = 5%. We consider the time length to be T = 2 years, which means the testing
trading time horizon is from January 1, 2020 to December 31, 2021. Other parameters
in themodel are estimated using the real market data of the stock pairs: 000001.SZ and
601328.SS, from January 1, 2019 to December 31, 2019. The calibrated parameters
are given in Table 1. The calibration method is adopted from [22] where analytical
formulas for the parameter estimates could be found in “Appendix” there. Note that
there is no restriction on the selection of asset A and B, we adopt the best choice of
asset A and B in the model according to the calibration.

In the following numerical experiments, we try to find the optimal λ in our model
to maximize the control problem (15). To find the optimal value of λ, we consider
four ranges of λ and calculate it’s corresponding optimal value of control problem Eq.
(15) by simulation. Based on the selection of the initial value, the four ranges of λ

are chosen as [−10, 10], [−20, 20], [−40, 40] and [−100, 100]. The optimal value
of λ and the corresponding J ∗ under four different ranges are presented in Fig. 2 and
concluded in Table 2. Therefore, we obtain the optimal weight h∗(t) by substituting
λ∗ = 13.5 into Eq. (45).
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Fig. 3 Bollinger band with moving window size 10-day

Fig. 4 Bollinger band with moving window size 20-day

To assess the performance of our MV pairs trading strategy (MVPT), we compare
it with the normalized MVPT (nMVPT) and two other trading strategies which are
chosen as benchmarks including

(i) The nMVPT:
Let hMVPT(t) = h(t) denote the MVPT at time t . The nMVPT at time t is then
defined as

hnMVPT(t) = hMVPT(t)

abs(maxs∈[0,T ]hMVPT(s))
, t ∈ [0, T ]. (64)

(ii) Pairs trading strategy (PT) based on z-score:
This pairs trading idea is based on Bollinger bands in Bollinger (1992): when the
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Fig. 5 z-score with moving window size 10-day

Fig. 6 z-score with moving window size 20-day

spread process hits the entry threshold, we open the positions on the pairs with
h(t) units, when it hits the exit threshold, we unwind the holding positions. We
set the investment weight in the pair of stocks to be h(t) = −sign(z-score(t)),
where

z-score(t) = X(t) − μX (t)

σX (t)
, (65)

μX andσX are the time-dependentmean and standard deviation of spread process.
We calculate μX and σX based on rolling historical data with window sizes 10-
day and 20-day, respectively. In our experiments, we choose the entry, exit and
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Fig. 7 Investment weight h(t) with moving window size 10-day

Fig. 8 Investment weight h(t) with moving window size 20-day

stop-loss signals to be {|z-score| > 1.2}, {|z-score| < 0.5} and {|z-score| > 5},
respectively.

(iii) Bond-only strategy (Bank):
In this case, we only consider investing in the risk-free asset. Therefore, the
investment weight in the pair of stocks is set to be h(t) = 0.

We present the Bollinger band and z-score with different moving window sizes in
Figs. 3, 4, 5 and 6. The different weights invested in the stock pair under MVPT,
nMVPT and PT are shown in Figs. 7 and 8. The corresponding wealth processes under
our trading strategy MVPT compared to nMVPT, PT and Bank are demonstrated in
Figs. 9 and 10.

From Figs. 7 and 8, we notice that the weight invested in the pair of stocks under
our MVPT strategy decreases as the investment time approaches to the terminal time
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Fig. 9 Wealth processes with moving window size 10-day

Fig. 10 Wealth processes with moving window size 20-day

T . This provides us the insight that investors tend to hold smaller positions in the pair
of risky assets as time goes by to prevent risk. The wealth processes under four trading
strategies in Figs. 9 and 10 show that our MVPT strategy outperforms the other three
strategies with either 10-day or 20-day runningmean and variance, which demonstrate
the good performance of our trading strategy. In addition, the nMVPT outperforms
the PT in terms of terminal wealth in both cases. Although with the 20-day moving
window size, sometimes the PT slightly outperforms the nMVPTwithin the investment
period, the performance of nMVPT is more stable over the whole investment period.
The numerical results also illustrate the advantages of the MVPT strategy when the
investment weights are not limited to remain between −1 and 1.
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6 Conclusions

This paper considers optimal pairs trading strategies under the MV framework. The
spread of the paired stocks is assumed to bemean-reverting and follows anOUprocess.
To cope with the time-inconsistency, we work on solutions with static and dynamic
MV optimalities, in the same spirit as [24]. This new approach introduced the related
constrained problems and made use of Lagrange multipliers to deduce the nonlinear
problems to a family of LQ problem, which can be solved by using classical HJB
approach. We obtained the static optimal strategies and then successfully extended
them to the dynamic optimality. In our numerical example, we illustrate the application
of optimal pairs trading strategy, the way to find out the Lagrangian multiplier λ and
demonstrate the good performance of our optimal trading strategy compared to other
strategies.
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