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Abstract This paper investigates the modeling of credit default under an interactive
reduced-form intensity-based model based on the Hidden Markov setting proposed in
Yu et al. (Quant Finance 7(5):781–794, 2017). The intensities of defaults are deter-
mined by the hidden economic states which are governed by a Markov chain, as
well as the past defaults. We estimate the parameters in the default intensity by using
Expectation–Maximization algorithmwith real market data under three different prac-
tical default models. Applications to pricing of credit default swap (CDS) is also
discussed. Numerical experiments are conducted to compare the results under our
models with real recession periods in US. The results demonstrate that our model is
able to capture the hidden features and simulate credit default risks which are critical
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in risk management and the extracted hidden economic states are consistent with the
real market data. In addition, we take pricing CDS as an example to illustrate the
sensitivity analysis.

Keywords Credit default swap (CDS) · Credit risk · Expectation–maximization
(EM) algorithm · Intensity models

1 Introduction

Modeling credit risk plays an important role in credit risk management. Much atten-
tion has been given to it especially after the global financial crisis. Popular models
adopted in the finance industry can be divided into two major categories: structural
firm value models and reduced-form intensity-based models. The structural firm value
model was pioneered by Black and Scholes (1973) and Merton (1974). The key idea
is to model the default of a firm by using its asset value, and adopt a geometric Brow-
nian motion to describe the asset value. When the asset value falls below a certain
prescribed level, the default of the firm is deemed to be triggered. The reduced-form
intensity-based model was pioneered by Jarrow and Turnbull (1995) and Madan and
Unal (1998). The main idea is to consider the defaults as exogenous processes and
describe their occurrences with Poisson processes and their variants. A middle ground
model between the structural models and the reduced-form models was introduced by
Cathcart and El-Jahel (1998) and it is called the signaling approach. They assumed that
the default occurs when some signaling process which captures the factors that affect
its default probability rather than the value of the assets of the firm hits a lower constant
default barrier. Besides, some hybrid credit riskmodels were also proposed. For exam-
ple, Cathcart and El-Jahel (2004) further developed an approach which combines the
structural value models and the reduced-form models by allowing expected and unex-
pected defaults, and analytical solutions for defaultable bonds under this model was
derived. The default occurrences in this model depend on a signaling variable which
is interpreted as the credit quality of the issuer, i.e., its rating, hits the threshold or a
hazard rate linearly dependent on the default-free interest rate. Ballestra and Pacelli
(2014) introduced a new hybrid model in which the default intensity is described by a
stochastic differential equation coupled with the process of the obligor’s asset value,
and derived an closed-form approximation solution.

In this paper, we investigate the credit risk model and calculationmethods proposed
in Yu et al. (2017). We consider adopting reduced-form intensity-based model which
has been widely adopted to solve portfolio default risk problems. A variety of intensity
models have been developed using ratings and corresponding default intensities for the
evaluation of credit risk since the 1990s. The form of the default intensities includes
constant intensity in Jarrow and Turnbull (1995), intensity depends on the stock price
in Madan and Unal (1998), and intensity depends on some state variable in Lando
(1998), etc. The rating process is typically done by the rating agencies and itsmigration
processes could bemodeledby the semi-Markovprocesses. Formore details, interested
readers may refer to Trueck and Rachev (2009) and D’Amico et al. (2017). In terms
of the way of describing the dependent defaults, to be more specific, reduced-form

123



Modeling Credit Risk with Hidden Markov Default Intensity

intensity-based models can be further divided into top-down models and bottom-up
models. Top-down models consider modeling the default times at the portfolio level
without reference to the intensities of individual entities. To recover the individual
entity’s intensity, one can employ random thinning and other methods. Some works
related to top-downmethods includeBrigo et al. (2006), Cont andMinca (2011), Davis
and Lo (2001), Giesecke et al. (2011) and Longstaff and Rajan (2008), etc. Bottom-up
models, on the other hand, focus on modeling the default intensities of individual
reference entities and their aggregation to form a portfolio default intensity. Some
works related include Duffie and Garleanu (2001), Duffie et al. (2006), Giesecke and
Goldberg (2004), Gu et al. (2013), Jarrow and Yu (2001), Schönbucher and Schubert
(2001), Yu (2007) and Yu et al. (2017), etc. This paper uses a bottom-up model.

Madan and Unal (1998) decomposed the default debt into survival security which
faces timing risk and default security which faces recovery risk, and derived explicit
prices and estimation methods for these two risks. Based on the credit risk model
proposed in Madan and Unal (1998), Ballestra et al. (2017) obtained an accurate and
fast quasi-analytical approximation formula for the survival probability by using a
Laplace transform approach, and showed this formula could also be used for pricing
CDSs. They also pointed out that the model by Madan and Unal (1998) is rather
consistent with the real market data. Yu (2007) extended the model proposed by
Lando (1998) and applied it to multiple defaults and their correlation. The distribution
of default times with interacting intensities can then be simulated with the total hazard
constructionmethodproposedbyNorros (1986) andShaked andShanthikumar (1987).
Based on this method, Zheng and Jiang (2009) then derived closed-form formulas
for the multiple default distributions under their contagion model. Gu et al. (2013)
proposed an ordered default rate method to calculate the distribution of ordered default
times with recursive formula. To extend, Gu et al. (2016) also applied reduced-form
model to study the probability distributions of the economic and recored default times.
Under a specific form of default intensities, Gu et al. (2014) further proposed a hidden
Markov reduced-form default model and extracted the hidden process with observable
information. Based on this hiddenmodel, Yu et al. (2017) generalized it and developed
a reduced-form intensity-based hidden credit model which are widely applicable to
various type of default intensities. Since filtering is a key step for Hidden Markov
Model (HMM), several different filtering methods could be found in the literature.
A popular and prominent method is based on reference probability approach which
startswith a reference probabilitymeasure underwhich the observeddynamics become
simpler and do not depend on the hidden state processes. For example, Elliott et al.
(2008), (2014), Frey and Runggaldier (2010, 2011), Frey and Schmidt (2011) and
Elliott and Siu (2013), etc.

In Yu et al. (2017), a flexible method for extracting the hidden process without
constraints on the dynamic of the model is derived with the similar idea from the
filtering method in Gu et al. (2014) by using moment generating function. With the
extracted hidden states, they employed the total construction method proposed in Yu
(2007) and developed closed-form formulas to calculate the joint default distribution.
When the intensities are homogeneous and symmetric, with the analytical formula of
joint default distribution, analytical algorithms are also derived for the calculation of
ordered default distributions.
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In this paper, with the methods for default distributions introduced in Yu et al.
(2017),we calibrate the reduced-form intensity-based hidden creditmodel and conduct
empirical study using real market data. Numerical experiments in Yu et al. (2017) only
considered two types of default intensities as examples to illustrate the methods. Here
we discuss threemore complicated default intensitiesmodelswhich include a no decay
case, a no-impact-decay case and impact-decay case. The default intensity models we
proposed are more realistic when compare to those in Yu et al. (2017). Furthermore,
estimation method, which is not discussed in Yu et al. (2017), is proposed here. The
parameters in our hidden credit risk models are estimated by using the Expectation–
Maximization (EM) algorithm with real market data. Hypothesis testings are also
conducted to support the estimation results.

The rest of the paper is structured as follows. Section 2 gives a snapshot of the inter-
acting intensity-based default model with hiddenMarkov process. Section 3 explicitly
presents the three default intensities models and the procedure of estimating param-
eters with EM Algorithms. In Sect. 4, one application of default risk model: pricing
Credit Default Swap (CDS) is discussed and formulas for sensitivity analysis are also
derived. Besides, experiments to demonstrate the sensitivity analysis are also given.
Section 5 provides the numerical experiments with real-world datasets to illustrate the
proposed methods discussed. Section 6 concludes the paper.

2 Model Setup

Let (�,F , P) be a complete probability space where P is a risk-neutral probability
measure, which is assumed to exist. Suppose there are K interacting entities, and we
let Ni (t) := 1{τi≤t}, where τi is a stopping time, representing the default time of credit
name i , for i = 1, 2, . . . , K and 1A is the indicator function. The indicator function
gives the value “1” if the statement A is true, and “0”, otherwise. Suppose we have an
underlying state process (Xt )t≥0 describing the dynamics of the economic condition.
Let F X

t := σ(Xs, 0 ≤ s ≤ t) ∨ N where N represents all the null subsets of � in F
and C1 ∨ C2 is the minimal σ -algebra containing both the σ -algebras C1 and C2. We
also letHt := F X

t ∨ FN
t where

FN
t = F1

t ∨ F2
t ∨ . . . ∨ FK

t and F i
t := σ

(
1{τi≤s}, 0 ≤ s ≤ t

) ∨ N .

We assume that for each i = 1, 2, . . . , K , Ni (t) possesses a nonnegative, {Ht }t≥0-
adapted, intensity process λi satisfying

E

(∫ t

0
λi (s)ds

)
< ∞, t ≥ 0, (1)

such that the compensated process

Mi (t) := Ni (t) −
∫ t∧τi

0
λi (s)ds , t ≥ 0, (2)
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is an ({Ht }t≥0, P)-martingale. Note that after the default time τi , Ni (t) will stay at
the value one, so there is no need to compensate for Ni (t) after time τi .

For all the market participants, we assume that they cannot observe the under-
lying process (Xt )t≥0 directly. Instead, they observe the process (Yt )t≥0, revealing
the delayed and noisy information of (Xt )t≥0, and also observe the default process
(Ni

t )t≥0. For example, Y (t)t≥0 could be linked to the interest rate, the situation of
defaults occurred in the market, etc, which could reveal the economics situations. In
our numerical experiments, we assume if the number of defaults exceed a prescribed
value, it gives people the information that the current economic situation is bad and
therefore we set a value for the observable process Y (t)t≥0 which represents the infor-
mation. Hence, the common information set available to the market participants at
time t is

Ft := FY
t ∨ FN

t where FY
t := σ(Ys, 0 ≤ s ≤ t) ∨ N .

We further assume that (Xt )t≥0 is an “exogenous” process to (Ni
t )t≥0 , for i =

1, 2, . . . , K . This means for any t , the σ -fields F X∞ and FN
t are conditionally inde-

pendent given F X
t and P(τi �= τ j ) = 1, i �= j .

To simplify our discussion, throughout the paper, we suppose that (Xt )t≥0 is a
two-state Markov chain taking a value in {x0, x1}. We assume that the transition rates
of the chain for “x0 → x1” and “x1 → x0” are θ0 and θ1, respectively. The observable
process (Yt )t≥0 is again a two-state Markov chain taking a value in {y0, y1}, with
transition rates depending on Xt , i.e., η0(Xt )(y0 → y1) and η1(Xt )(y1 → y0), where
η0 and η1 are real-valued functions. At time 0, we suppose that X0 is in state x0 and
Y0 is in state y1. Since the methods introduce in Yu et al. (2017) can still be applicable
when the Markov chains X and Y have more than two states, i.e., finite many states
though more complicated notations may involve. We remark that the discussion in this
paper could also be applicable to more states.

3 Default Distributions

To facilitate our discussion and specify the formof the intensities,wegive the following
notations. Suppose that at time t , ND

t defaults have already occurred at t1, t2, . . . , tN D
t

such that
0 = t0 < t1 < · · · < tN D

t
≤ t.

Then we denote TND
t

= (t1, . . . , tN D
t

) the ordered ND
t default times and IN D

t
=

( j1, . . . , jN D
t

) the corresponding ND
t defaulters. Each process λi (i = 1, . . . , K ), is

{Ht }t≥0-predictable, that is to say λi (t) is known given information about the chain
X and all the default processes prior to time t . Then the intensity of τ i can be written
as λit = λi (t |IN D

t
, TND

t
, Xt ) where Xt is the state of the chain X at time t . Note that

(IN D
t

, TND
t

, Xt ) ∈ Ht .
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Here we consider three different default intensity models:

(i) Decay Model I:

λi (t) = exp

⎛

⎝a +
⎛

⎝c
∑

j �=i

1{τ j≤t}

⎞

⎠ · e−t/γ + b · X (t)

⎞

⎠ (3)

(ii) Decay Model II:

λi (t) = exp

⎛

⎝a + c
∑

j �=i

1{τ j≤t} · e−(t−τ j )/γ + b · X (t)

⎞

⎠ (4)

(iii) No-decay Model:

λi (t) = exp

⎛

⎝a + c
∑

j �=i

1{τ j≤t} + b · X (t)

⎞

⎠ . (5)

Here a, b and c are unknown parameters which could be estimated with real default
data, γ is a parameter to adjust the default scale. All of the three models established in
this paper are in the form of exponential function which are different from the models
discussed in Yu et al. (2017). With this exponential form, the default intensities in
the Poisson process could be guaranteed to be positive regardless of the values of
parameters in the models.

For the estimation of the parameters a, b and c in the intensity models, we employ
the EM Algorithm. To demonstrate the idea, we assume that the transition rates of
jump process Y is

η0(x) =
{
p01, x = x0
p11, x = x1

and η1(x) =
{
p00, x = x0
p10, x = x1.

(6)

It is possible to define the process in continuous time.However, to simplify the notation
for our filtering, smoothing, and the EM algorithm, we assume that the process is
defined on a discrete set of evenly spaced lattice points. We divide the interval [0, T ]
into L intervals of equal width δ = T/L , then t = l · δ for l = 0, 1, . . . , L . Based
on EM algorithm, we could derive the corresponding likelihood function and estimate
the related parameters. We take decay Model I as an example. Since γ is determined
by the datasets, we simply assume that it is 1 for convenience. The likelihood function
could be written as follows:
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p(N , J, H |X) = ∏
t

[
exp

((
a + c · (∑

i∈N+ 1{τi≤t}
)) · e−t + b · (X (t))

)]N (t)

· 1
(N (t)!) exp

[− exp
((
a + c · (∑

i∈N+ 1{τi≤t}
)) · e−t + b · (X (t))

)]

·(p00 + (p10 − p00) · X (t))J (t)·(H(t))

·(p01 + (p11 − p01) · X (t))J (t)·(H(t)+1)

·(1 − p01 + (p01 − p11) · X (t)(1−J (t))·(H(t)+1)

·(1 − p00 + (p00 − p10) · X (t)(1−J (t))·(H(t))

(7)

where N (t) is the default processes. Here J (t) indicates whether a jump occurred at
t , H(t) represents the cumulative numbers of jumps at t . With the assumed transition
rates for jump process, we can then derive the likelihood calculation for jump process,
i.e.,

j (J, H |X) = (p00 + (p10 − p00) · X (t))J (t)·(H(t))

·(p01 + (p11 − p01) · X (t))J (t)·(H(t)+1)

·(1 − p01 + (p01 − p11) · X (t)(1−J (t))·(H(t)+1)

·(1 − p00 + (p00 − p10) · X (t)(1−J (t))·(H(t)).

(8)

If X (t) = 0, then p00 + (p10 − p00) · X (t) = p00, if X (t) = 1, then p00 + (p10 −
p00) · X (t) = p10, etc, which embody the transition rates for jump process. While the
rest parts of p(N , J, H |X) is the likelihood function of the default process. Of course,
with different transition rates of jump process Y , we can derive the corresponding
likelihood functions. Taking logarithm at the right-hand side of the above function,
the log-likelihood function related to the parameters a, b and c is given by

l(N |X) = a
(
N (τ1) exp{−τ1} + · · · + N (τn) exp{−τn}

)

+ c
(
D1N (τ2) exp{−τ2} + Dn−1N (τn) exp{−τn}

)

+ b
(
N (τ1)Xτ1 + · · · + N (τn)Xτn ) − ∑τ1

0 exp(a exp{−t} + b(Xt )
)

− · · · − ∑T
τn
exp

(
a exp{−t} + cDn exp{−t} + b(Xt )) − log(N (t)!)

(9)

where D1, . . . , Di , . . . , Dn represent the cumulative default times by the i th default
time, that is to say Di = ∑

j∈N+ 1{τ j≤τi }. According to the EM algorithm, we com-
pute the E-step first, which is the expectation of the log-likelihood function given
the parameter estimated from the last iteration. Then in the M-step, we take their
derivatives with respect to a, b and c, and let the individual derivatives equal to zero.
Therefore, we obtain the following equations.

(i) For parameter a:

N (τ1) exp(−τ1) + · · · + N (τn) exp(−τn)

= E
[ ∑τ1

t exp(−t) exp(a exp{−t} + b(Xt )) + · · ·
+∑T

τn
exp(−t) exp(a exp{−t} + cDn exp{−t} + b(Xt ))

]
.

(10)
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(ii) For parameter b:

N (τ1)Xτ1 + · · · + N (τn)Xτn

= E
[ ∑τ1

t=0 exp(a exp{−t} + b(X (t)))X (t) + · · ·
+∑T

t=τn
exp((a + cDn) exp{−t} + b(X (t)))X (t)

]
.

(11)

(iii) For parameter c:

N (τ2)D1 exp(−τ2) + · · · + N (τn)Dn−1 exp(−τn)

= E
[ ∑τ2

τ1
D1 exp(−t) exp(a exp{−t} + cD1 exp{−t} + b(Xt )) + · · ·

+∑T
τn
Dn exp(−t) exp(a exp{−t} + cDn exp{−t} + b(Xt ))

]
.

(12)

Since the path of X is unobservable, while the path of Y and Ni , (i = 1, . . . , K )
are observable, we can exploit the relationship between X , Y and Ni , i = 1, . . . , K .
To find the probability law of X , we apply the recursive method proposed in Yu et al.
(2017) to calculate the conditional probability P(Xt = xi |Ft ), (i = 0, 1, t ≥ 0).

4 Sensitivity Analysis

In this section,we consider pricingCreditDefault Swaps (CDS) and conduct sensitivity
analysis to study the effect of the model parameters. Assume that the buyer of the CDS
agrees to pay premiums to the seller continuously over time at a fixed rate until the
expiration time of the CDS contract. For instance, we consider the following intensity
model (Decay Model I):

λi (t) = exp

⎛

⎝a +
⎛

⎝c
∑

j �=i

1{τ j≤t}

⎞

⎠ · e−t/γ + b · X (t)

⎞

⎠ . (13)

We consider the sensitivity analysis of the following two cases of CDS. To be more
specific, we consider a first-to-default basket CDS contact and a second-to-default
CDS contact individually. For the first-to-default CDS, if any one entity out of the
portfolio of first-to-default basket CDS contact default prior to the expiry time, then
$1 will be paid. Similar to the second-to-default CDS contact, if any two entities
default prior to the expiry time, then $1 will be paid. For simplicity, this payment only
occurs at the expiry time, but the payment of premium occurs at the initial time.

Let y be the fixed premium rate, and suppose the issue time of the swap contract
is 0, the expiry time is T , and we are at time s, then the present value of the premium
payment from the buyer should be

E

(∫ T

0
e(−rs)y1{τ1>s}ds

)
(14)
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where τ1 represents the first default time and r denotes the interest rate. This means if
any one of the entities in the portfolio defaults, the buyer of the CDS contract would
stop paying the premium.

1. First-to-default CDS: the present the value of the seller should be
E

(
e(−rT )1{τ1≤T }

)
. Therefore, the premium rate is

y1 := y = E
(
e(−rT )1{τ1≤T }

)

E
(∫ T

0 e(−rs)1{τ1>s}ds
) (15)

and we denote this y as y1 to distinguish the one in the second case.
2. Second-to-default CDS: the present the value of the seller should be

E
(
e(−rT )1{τ2≤T }

)
. Therefore, the premium rate is

y2 := y = E
(
e(−rT )1{τ2≤T }

)

E
(∫ T

0 e(−rs)1{τ1>s}ds
) (16)

for this second-to-default CDS case.

Assume there is no jump observed in the observable process Y (t) before the expiry
time T . Without loss of generality, we further assume that process X (t) does not
jump neither before T , which means this stochastic process is degenerate and X (t) =
k, 0 ≤ t ≤ T for some constant k, to simplify our discussion. Therefore, we have the
following formulas

y1 = e(−rT )
(
r + λ1

)(
1 − e−λ1T

)

1 − e(−(r+λ1)T )
and y2 = β · e(−rT )

(
r + λ1

)

1 − e(−(r+λ1)T )
(17)

where
β = P

(
τ2 ≤ T

) = 1 − P
(
τ2 > T

)

= P
(
T < τ1

) + P
(
τ1 ≤ T < τ2

)

= e−λ1T + λ1

λ2 − λ1
e−λ2T

(
e(λ2−λ1)T − 1

) (18)

and λ1 = exp (a + b · X (t)), λ2 = exp
(
a + c · e−t/γ + b · X (t)

)
.

Given the assumption that the interest rate is r = 3%, expiry time T = 1 year,
γ = 60, the process X (t) = 0.5 before the expiry time, and the initial parameters are
a = −1.5, b = 2.5 and c = 0.02, we conducted the following sensitivity analysis
with respect to parameters a, b and c under two CDS cases, see, Figs. 1 and 2.

As theparameters increases, on thewhole, the premiumrateswould increase accord-
ingly. In otherwords,when theweight of influence factors becomebigger, the premium
rates would become higher. In the first-to-default basket CDS case, premium y does
not change as parameter c changes. This is because in this case, the default intensity
does not depend on c.
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Fig. 1 Change of premium y1
with coefficients under
1st-to-default CDS. a premium
y1 change with respect to a, b
premium y1 change with respect
to b, c premium y1 change with
respect to c
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Fig. 2 Change of premium y2
with coefficients under
2nd-to-default CDS. a premium
y2 change with respect to a, b
premium y2 change with respect
to b, c premium y2 change with
respect to c
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5 Default Data and Numerical Experiments

In this section, we conduct some numerical experiment with the real market data. In
our experiments, we assume (x0, x1) = (0, 1) and (y0, y1) = (0, 1) and we let the
transition rates be θ0 = 0.1 and θ1 = 0.1, the initial state x0 = 0. For the observable
chain Yt , we set the transition rates as

η0(x) =
{
0.3, x = x0
0.1, x = x1

and η1(x) =
{
0.1, x = x0
0.3, x = x1.

(19)

The initial state is y1 = 1 as we assumed. For the parameters estimation under EM
algorithm, KolmogorovSmirnov (K–S) test is employed to measure the agreement
between the model and real data sequences. We consider applying the p value to test
the results, and the level of significance is assumed to be 5%. For all the three intensity
models, we assume γ = 70.

In our numerical experiments, we adopt four real defaults sequences observed in
the period 1981–2002 used in Giampieri et al. (2005). They are taken from four
industrial sectors: consumer/service, energy and natural resources, leisure time/media
and transportation. The number of default events could be seen in Fig. 3 for the four
different sectors. Since the real market default data are seasonal data in the period of
1981–2002, there are 88 data points in each default sequence as the time length is
T = 22. The number L of time intervals in the EM algorithm is chosen to be 88 to
use all of the data available and to make sure the step size δ is seasonal which is 1/4.
We take the first three sequences, i.e., (i) Consumer/Service, (ii) Energy and Natural
Resources, and (iii) Leisure Time/Media to form a combination. If there are two or
more sequences defaulted among these three sequences, then Y = 1 which represents
the “bad” economic state, and Y = 0 represents the “good” state.

Under Decay Model I:

λi (t) = exp

⎛

⎝a +
⎛

⎝c
∑

j �=i

1{τ j≤t}

⎞

⎠ · e−t/γ + b · X (t)

⎞

⎠ (20)

the estimated parameters are ā = −2.76, b̄ = 2.00, c̄ = 0.155 and the p value is
0.0690. Figure 4 shows the results.

Under Decay Model II:

λi (t) = exp

⎛

⎝a + c
∑

j �=i

1{τ j≤t} · e−(t−τ j )/γ + b · X (t)

⎞

⎠ (21)

the estimated parameters are ā = −5.14, b̄ = 4.86, c̄ = 0.032 and the p value is
0.0700. Figure 5 shows the results.
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Fig. 3 The default sequences of four sectors. a The default sequences of consumer/service. b The default
sequences of energy and natural resources. c The default sequences of leisure time/media. d The default
sequences of transportation
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Fig. 4 E(X |FT ) under the Decay Model I
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Fig. 5 E(X |FT ) under the Decay Model II
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Fig. 6 E(X |FT ) under the No-decay Model

Under No-decay Model:

λi (t) = exp

⎛

⎝a + c
∑

j �=i

1{τ j≤t} + b · X (t)

⎞

⎠ (22)

the estimated parameters are ā = −3.67, b̄ = 2.72, c̄ = 0.102 and p value is 0.0909.
Figure 6 shows the results. For all of the three numerical experiments, the number of
iterations required for convergence for EM algorithms are around 40–50.
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To understand the above numerical experiments, we take default events of trans-
portation as an instance. The defaults could help to reveal the economic states, that is
X . When there are more defaults occurred, this could give us a hint that economic state
is bad, which means X = 1. According to E(X |FT ) under three default intensities in
Figs. 4, 5 and 6, all the results are generally consistent with the real-world economic
states, i.e., economic situation in US between 1981 and 2002, which demonstrates that
our model is able to capture the hidden features and simulate credit default risks. In
addition, the interactive Model I with decay effects can better explain the economic
situations than those models without decay or decay impacts from other defaults.
Actually, from 1981 to 2002, there are several recession periods in the U.S. (2018) :
July 1981–Nov 1982, July 1990–Mar 1991 andMar 2001–Nov 2001. According to the
history of economic recession in US, the results of “bad” economic states (recession)
shown from Decay Model I are more consistent with the history compared to two
other models, which also shows the efficiency and practicability of this model. But on
the other hand, we could find that actually Decay Model II with impacts from default
events contains more economic information if we consider it with more details. By
researching the economy situations in 1990s in US, there is a short-lived economic
growth pause during late 1994 and late 1995 because of the increased interest rates
raised by Federal Reserve and the affect from the economic financial crises in Mexico
in 1995 (1990). This situation is consistent with the results from the Decay Model II
in Fig. 5 which indicates bad economic state during this short period.

6 Conclusions

In this paper, we present three different reduced-form intensity-based credit risk mod-
els with a hidden Markov process modeling the evolution of economic condition over
time. The parameters in these three models are estimated from EM Algorithms with
real market data. To illustrate the efficiency of our models with estimated parameters,
we conduct empirical experiments and show our results can capture the economic
states. Besides, we also take an important credit derivative, CDS, as an example to
demonstrate the sensitivity analysis.
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